Locally homogeneous pseudo-Riemannian manifolds

Victor Patrangenaru
Department of Mathematics, Indiana University, Bloomington, IN 47405-5701, USA

Received 28 February 1994; revised 22 August 1994

Abstract

The work of Cartan, Nomizu, Singer, Tricerri and Vanhecke on manifolds with transitive algebras of Killing vector fields is extended to the pseudo-Riemannian case.

Keywords: Transitive Killing algebras, Pseudo-Riemannian Lie foliation, Locally homogeneous pseudoRiemannian manifold
1991 MSC: 53 C 30,53 C 50

0. Introduction and Summary

The homogeneous universes in space and time "display in simple form features of more complex expanding universes" [19, Ch. 7]. Some of these space-times remain a starting point for studies in general relativity or electromagnetism [$3,11,13,20$]. Equally important in cosmology is the local metric classification of three dimensional geometries viewed as slices in homogeneous spacetimes [8]. Wesson theory [24] and supergravity [17] are other reasons for a geometric study of locally homogeneous pseudo-Riemannian manifolds (l.h.pR.'s). Ref. [7] gives a recent account of the local theory of homogeneous pseudo-Riemannian structures.

Our approach to the study of l.h.pR.'s in their full generality is different, and uses as a starting point the theory of Cartan triples [15]. Since in some respects the extension of that method is obvious, proofs will be kept to a minimum.

Suppose the connected pseudo-Riemannian manifold of index $\nu,(M, g)$ enjoys the following property: there is a Lie algebra ${ }^{f}$ of Killing vector fields on M, so that each tangent vector of M extends to an element of \mathfrak{f}. Such a pseudo-Riemannian manifold is said locally homogeneous (l.h.pR.) and \mathfrak{f} is a transitive Killing algebra on M.

Let K be the abstract group associated with f and let u be an orthoframe at a given point x on M. Then one may exponentiate the infinitesimal action of a neighborhood of the identity in K into the orthoframe bundle $O M$ (local version of $I M \subseteq O M$). The tangent map defines a monomorphism of \mathfrak{f} to the tangent space at u to $O M$. The structure equations of \mathscr{f} are obtained by pulling back the structure equations of the Ambrose-Singer connection and tautological one-form on the reduced bundle. This gives a decomposition of \neq into $g_{u} \oplus \mathbb{R}^{n}$, where g_{u} (the algebra of the structure group of the reduced bundle) is the U-isotropic representation of the isotropy algebra into the pseudo-orthogonal algebra $\mathfrak{o}_{\nu}(n)$. The bracket on $\mathfrak{g}_{u} \oplus \mathbb{R}^{n}$ is a modification of the standard semiproduct with extra terms arising from two operators. One is the Cartan-Singer map $\Gamma_{u}: \mathbb{R}^{n} \rightarrow \mathfrak{p}$, where \mathfrak{p} is a complement of \mathfrak{g}_{u} in $\mathfrak{D}_{\nu}(n)$ (the orthocomplement w.r.t. the Killing form, whenever this exists); it is defined by pulling back the original $\mathfrak{o}_{\nu}(n)$-connection restricted to \mathfrak{g}_{u}. The other operator in the definition of the bracket is the curvature at x w.r.t. u of the Ambrose-Singer connection, and is determined by Γ_{u} and by Ω_{u}, the g_{u}-projection of the curvature along $\mathfrak{p} ;\left(\mathfrak{p}, \Gamma_{u}, \Omega_{u}\right)$ is said to be a \mathfrak{g}_{u}-triple.

The l.h.pR. (M, g) is locally isometric to a homogeneous space, iff the connected subgroup of Lie algebra \mathfrak{g}_{u} of the abstract Lie group K of Lie algebra $\mathfrak{g}_{u} \oplus \mathbb{R}^{n}$ is closed in K. An example of l.h.p.R. which is locally nonisometric to a homogeneous space (see also Refs. [9,10,15,16]) is displayed in Section 3.

The converse is also true: if \mathfrak{g} is a subalgebra of $\mathfrak{o}_{\nu}(n)$, and $(\mathfrak{p}, \Gamma, \bar{\Omega})$ is a \mathfrak{g} triple, there is a l.h.pR. (M, g), unique up to a local isometry, called the local geometric realization of the g-triple, and a frame $u \in O M$, for which g is the linear isotropy algebra w.r.t. u; moreover $\Gamma_{u}=\Gamma$ and $\Omega_{u}=\bar{\Omega}$. As such, the problem of listing the n-dimensional l.h.pR.'s of index ν amounts to the following algorithm:
(a) find conjugacy classes of Lie subalgebras of $\mathrm{o}_{\nu}(n)$;
(b) for a given Lie subalgebra \mathfrak{g} of $\mathrm{D}_{\nu}(n)$, find all g -triples.

This method is not too effective if $\mathfrak{g}=0$ (pseudo-Riemannian Lie groups). However, starting from the joint work of Cordero and Parker [6] and using Propositions 3.2 and 3.3 in this study, the program can be carried out completely in dimension three, and even in this low-dimensional case there are examples of l.h.pR.'s that are degenerated (see Section 2 for a definition) or of nonsymmetric Lorentz manifolds, modelled on a symmetric space [5,16]. The + and - spaces which are introduced in Section 3 are typical examples of nonflat Lorentz manifolds with null nongeneric vectors [1].

1. Transitive Killing algebras of pseudo-Riemannian manifolds

Assume g is a pseudo-Riemannian structure of index ν on the n-dimensional simply connected manifold M and that \mathfrak{l} is a transitive Killing algebra on (M, g). The kernel of the evaluation map $\mathrm{ev}_{x}: \mathfrak{f} \rightarrow T_{x} M$ is the isotropy subalgebra \mathfrak{f}_{x} of \mathfrak{f} at the point x.

If $\xi \in \mathfrak{f}_{x}$, the local one-parameter group of isometries generated by ξ, $\left(\varphi_{1}^{\xi}\right)$, has the fixed point x; consequently, for each U in $O M_{x}$, one has a local one parameter subgroup $\Lambda_{\xi}(t)$ of the pseudo-orthogonal group $\mathrm{O}_{\nu}(n)$ [12], defined as follows:

Let $f: U \rightarrow M$ be a local isometry defined on an open subset U of M and let $L f$: $O U \rightarrow O M$, be the left of f to the bundle of orthoframes. Then

$$
\left(L \varphi_{t}^{\xi}\right)(u)=u \cdot \Lambda_{\xi}(t)
$$

The linear isotropy representation of \mathfrak{f}_{x} associated with the frame u is λ_{u} : $\mathfrak{f}_{x} \rightarrow \mathfrak{o}_{\nu}(n)$,

$$
\begin{equation*}
\lambda_{u}(\xi)=\dot{\Lambda}_{\xi}(0) \tag{1.1}
\end{equation*}
$$

Note that the main difference between the Riemannian and the other $\mathrm{O}_{\nu}(n)$ structures is that $\mathfrak{D}(n)$ is the only compact form among the real forms $\mathfrak{o}_{\alpha}(n)$ of $\mathfrak{v}(n, \mathbb{C})$. Therefore, the method of Cartan triples [15] can be restated in the pseudoRiemannian case whenever the restriction of the Killing form to $\mathfrak{g}_{u}=\lambda_{u}\left(\mathfrak{f}_{x}\right)$ is nondegenerate. A l.h.pR. is nondegenerate (n.l.h.pR.) if it admits at least one transitive Killing algebra \mathfrak{f} with a nondegenerate linear isotropy algebra \mathfrak{g}_{u}. Such a \mathfrak{f} is said to be a nonsingular Killing algebra.

Let (K, H) be the pair consisting of the simply connected group of Lie algebra \mathfrak{f}, and of its connected Lie subgroup of Lie algebra \mathfrak{f}_{x}, and let α be the maximal local K-transformation group on M [14] generated by \mathfrak{f}.

The map α lifts in a standard way to a local K-transformation group of isometries without fixed points $L(\alpha)$ of ($O M, g_{\nabla}$), where g_{∇} is the metric associated to the Levi-Civita connection, defined on the basic and fundamental vector fields in the following formulas [22]:

$$
\begin{align*}
& g_{\nabla}\left(B_{u}(X), B_{u}(Y)\right)=\langle X, Y\rangle_{\nu}, \quad X, Y \in \mathbb{R}^{n}, \\
& g_{\nabla}\left(A_{u}^{*}, B_{u}^{*}\right)=-\operatorname{Tr} A B, \quad A, B \in \mathfrak{o}_{\nu}(n) \\
& g_{\nabla}\left(B_{u}(X) \cdot A_{u}^{*}\right)=0, \quad X \in \mathbb{R}^{n}, A \in \mathfrak{o}_{\nu}(n), \tag{1.2}
\end{align*}
$$

where \langle,\rangle_{ν} is the standard pseudo-Euclidean scalar product of index ν.
Let D be an open neighborhood of O in \mathfrak{f}, such that $\varphi_{1}^{\xi}(x)$ is defined for each $\xi \in D$. If $u \in O M_{x}$, one may define the map $J_{u}: \exp D \rightarrow O M$, by

$$
\begin{equation*}
J_{u}(\exp \xi)=L(\alpha)(\exp \xi, u) \tag{1.3}
\end{equation*}
$$

Then, if $\tilde{\xi}$ is the Levi-Civita horizontal lift of ξ, and if $A_{\xi}=L_{\xi}-\nabla_{\xi}$, we obtain, as in the Riemannian case:

Proposition 1.1. Let $\left[A_{\xi_{x} x}\right]_{u}$ be the matrix of $A_{\xi_{x}}$ w.r.t. U. Then

$$
\begin{equation*}
\left(d_{1} J_{u}\right)(\xi)=\tilde{\xi}(u)-\left(\left[A_{\xi x}\right]_{u}\right)_{u}^{*} \tag{1.4}
\end{equation*}
$$

Let \mathfrak{p} be a complement of \mathfrak{g}_{u} in $\mathfrak{D}_{\nu}(n)$. From the previous proposition, it follows that $d_{1} J_{u}$ is one to one, so that if H is the horizontal Levi-Civita distribution, and if
$\sigma_{u}: \mathfrak{v}_{\nu}(n) \rightarrow T_{u} O M$ is the $\operatorname{map} A \mapsto A_{u}^{*}$ ' 'tangent'' to the right action of $\mathrm{O}_{\nu}(n)$ in $O M_{u}$, then

$$
\begin{equation*}
\boldsymbol{m}_{u}=\left(d_{1} J_{u}\right)^{-1}\left(\sigma_{u}(\mathfrak{p})+H_{u}\right) \tag{1.5}
\end{equation*}
$$

is a direct summand of \mathfrak{f}_{x} in \mathfrak{f}.
As such, the restriction of ev_{u} to m_{u} is a linear isomorphism from m_{u} to $T_{x} M$. Then, if $u=\left(x, u_{1}, \ldots, u_{n}\right)$, for each index $i=1, \ldots, n$, there is a unique ξ_{i} in m_{u}, such that $\xi_{i}(x)=u_{i}$. One may prove the following:

Proposition 1.2. Let $\theta \in \mathscr{D}^{1}\left(O M, \mathbb{R}^{n}\right), \omega \in \mathscr{D}^{1}\left(O M, \mathfrak{o}_{\nu}(n)\right)$ be the tautological form and the Levi-Civita connection form on $\exp D$, and let ${ }_{u} \theta=J_{u}^{*} \theta,{ }_{u} \omega=J_{u}^{*} \omega$. Then ${ }_{u} \theta$ and ${ }_{u} \omega$ are left invariant forms on $\exp D$ and $\operatorname{rank}_{u} \theta=n$.

Further, ${ }_{u} \omega$ splits into two vector-valued parts, ${ }_{u} \omega={ }_{u} \omega_{\mathfrak{p}} \oplus_{u} \omega_{\mathrm{g}}$. Let $\|X\|_{\nu}^{2}=\langle X$, $X\rangle_{\nu}$ Then Cartan's theorem on the local structure of a homogeneous Riemannian space [4, Ch. XII] has the following analogue:

Theorem 1.1. (1) There is a linear map $\Gamma_{u}: \mathbb{R}^{n} \rightarrow \mathfrak{p}_{u}$, such that ${ }_{u} \omega_{\mathfrak{p}}=\Gamma_{u}{ }^{\circ}{ }_{u} \theta$.
(2) There is a neighborhood V of 1_{K}, which is regular for the foliation F, given by the system ${ }_{u} \theta=0$. F is a pseudo-Riemannian foliation with the transverse metric $\left\|_{u} \theta\right\|_{\nu}^{2}$ which induces a locally K-invariant metric g_{u} on the space of leaves V / F.
(3) Let F_{k} be the leaf of F through k. The map $F_{k} \rightarrow k(x)$ is a local isometry between $\left(V / F, g_{u}\right)$ and (M, g).

We shall say that Γ_{u} is the Cartan-Singer map w.r.t. the decomposition $\mathfrak{D}_{\nu}(n)=g_{u} \oplus \mathfrak{p}$. Let us look for the Maurer-Cartan equations of \mathfrak{f} as a consequence of the structure equations of $O M$.

First, let $\Omega \in \mathfrak{D}^{2}\left(O M, \mathfrak{o}_{\nu}(n)\right)$ be the Riemann curvature form, and let ${ }_{u} \Omega=$ $J_{u}^{*} \Omega .{ }_{u} \Omega$ splits into its \mathfrak{g}_{u} and \mathfrak{p} components:

$$
\begin{equation*}
{ }_{u} \Omega={ }_{u} \Omega_{\mathfrak{g}} \oplus_{u} \Omega_{\mathfrak{p}} \tag{1.6}
\end{equation*}
$$

Let $\left(\epsilon_{b}\right), b=1, \ldots, \frac{1}{2} n(n-1)$, be a basis of $\mathfrak{o}_{\nu}(n)$, such that the first elements lie in g_{u} and the last ones in \mathfrak{p}; if α is the index for the elements in g_{u}, let ${ }_{u} \Omega_{\mathfrak{g}}$ be the vector-valued form $\frac{1}{2} \Omega_{i j u}^{\alpha} \theta^{i} \wedge_{u} \theta^{j} \epsilon_{\alpha}$.

Since ${ }_{u} \Omega_{i j}^{\alpha}$ are constant on $\exp D$, one may define the bilinear skew symmetric map $\Omega_{n}: \mathbb{R}^{n} \times \mathbb{R}^{n} \rightarrow g_{u}$ by

$$
\begin{equation*}
\Omega_{u}\left(e_{i}, e_{j}\right)={ }_{u} \Omega_{i j}^{\alpha} \epsilon_{\alpha}, \quad i, j=1, \ldots, n \tag{1.7}
\end{equation*}
$$

We call the map Ω_{u} the g_{u}-curvature of M, w.r.t. the decomposition $\mathfrak{o}_{\nu}(n)=\mathfrak{g}_{u} \oplus \mathfrak{p}$. Let $T: \mathbb{R}^{n} \times \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}, \bar{\Omega}: \mathbb{R}^{n} \times \mathbb{R}^{n} \rightarrow \mathfrak{g}_{u}$, be defined by

$$
\begin{align*}
& T(X, Y)=\Gamma_{u}(Y) X-\Gamma_{u}(X) Y \tag{1.8}\\
& \bar{\Omega}(X, Y)=\Omega_{u}(X, Y)-\left[\Gamma_{u}(X), \Gamma_{u}(Y)\right]_{g_{u}} \tag{1.9}
\end{align*}
$$

The bracket in (1.9) is the commutator. The following result is a consequence of the structure equations on $O M$, pulled back on K, as in Proposition 1.2.

Theorem 1.2. f is isomorphic to the Lie algebra $\left(g_{u} \oplus \mathbb{R}^{n},[],\right)$:

$$
\begin{align*}
& {[\xi, \eta]=[\xi, \eta], \quad \forall \xi, \forall \eta \in g_{u}} \tag{1.10}\\
& {[\xi, X]=\xi(X)+\left[\xi, \Gamma_{u}(X)\right]_{\mathrm{g}_{u}}, \quad \forall \xi \in \mathfrak{g}, \forall X \in \mathbb{R}^{n}} \tag{1.11}\\
& {[X, Y]=-T(X, Y)-\tilde{\Omega}(X, Y), \quad \forall X, \forall Y \in \mathbb{R}^{n}} \tag{1.12}
\end{align*}
$$

Remark 1.1 If the transitive Killing algebra is nonsingular, we shall always take for $\mathfrak{p}=\mathfrak{p}_{u}$ the orthocomplement of \mathfrak{g}_{u} in $\mathfrak{D}_{\nu}(n)$ w.r.t. the Killing form. In this case, $\mathfrak{m}_{u}=\mathfrak{m}$ does not depend on u, and $\mathfrak{f}=\mathcal{f}_{x} \oplus \mathfrak{m}$ is a reductive decomposition. As in the Riemannian case, the canonical connection of the n.l.h.pR. M w.r.t. this decomposition has torsion T, and g_{u}-part of the curvature $\tilde{\Omega}$. Ω_{u} is called the g_{u}-part of the curvature, and Γ_{u} the Cartan-Singer map since the Ambrose-Singer connection refers to the decomposition $\mathfrak{o}_{\nu}(n)=\mathfrak{g}_{u} \oplus \mathfrak{g}_{u}{ }^{1}$.

As a consequence of Theorem 1.2, the Jacobi identities for 1 are as follows:

$$
\begin{align*}
& {[\xi, \tilde{\Omega}(X, Y)]-\tilde{\Omega}(\xi X, Y)-\tilde{\Omega}(X, \xi Y)} \\
& \quad+\left[\left[\xi, \Gamma_{u}(X)\right]_{g_{u}}, \Gamma_{u}(Y)\right]_{\mathrm{g}_{u}}+\left[\xi, \Gamma_{u}(T(X, Y))\right]_{\mathrm{g}_{u}} \\
& \quad+\left[\Gamma_{u}(X),\left[\xi, \Gamma_{u}(Y)\right]_{\mathrm{g}_{u}}\right]_{\mathrm{g}_{u}}=0, \quad \forall \xi \in \mathfrak{g}, \forall X, \forall Y \in \mathbb{R}^{n} ; \tag{1.13}\\
& \sum_{\text {cycl }} \tilde{\Omega}(T(X, Y), Z)-\left[\tilde{\Omega}(X, Y), \Gamma_{u}(Z)\right]_{\mathrm{g}_{u}}=0 \\
& \quad \forall X, \forall Y, \forall Z \in \mathbb{R}^{n} ; \tag{1.14}\\
& \sum_{\text {cycl }} \tilde{\Omega}(X, Y)(Z)-T(T(X, Y) Z)=0 \\
& \quad \forall X, \forall Y, \forall Z \in \mathbb{R}^{n} . \tag{1.15}
\end{align*}
$$

The ad \mathfrak{g}_{u}-invariance of Γ_{u}, valid in the Riemannian case, becomes:

$$
\begin{equation*}
\Gamma_{u}(\xi X)=\left[\xi, \Gamma_{u}(X)\right]_{\mathfrak{p}}, \quad \forall \xi \in \mathfrak{g}_{u}, \forall X \in \mathbb{R}^{n} \tag{1.16}
\end{equation*}
$$

The \mathfrak{p}-part of the curvature, ${ }_{p} \Omega_{u}$, is given by the same formula as in the Riemannian case:

$$
\begin{equation*}
{ }_{\mathfrak{p}} \Omega_{u}=\left[\Gamma_{u}(X), \Gamma_{u}(Y)\right]_{\mathfrak{p}}+\Gamma_{u}(T(X, Y)) \tag{1.17}
\end{equation*}
$$

The analogue of Theorem 1.3 in Ref. [15] is:
Theorem 1.3. Let \mathfrak{f} be a transitive Killing algebra of the l.h.pR. M and let \mathfrak{h} be the isotropy algebra at point x. Then M is locally isometric to a homogeneous pseudoRiemannian space iff H is closed in K.

We also have

Proposition 1.3. Let \mathfrak{f} be a nonsingular Killing algebra of M. Then the sequence of the covariant derivatives of the Riemannian curvature tensor, $\left(\nabla^{s} R\right)_{s \in \mathbb{N}}$, w.r.t. the frame u, may be recovered from the Cartan-Singer map Γ_{u} and from the $\mathfrak{g}_{u^{-}}$ curvature Ω_{u}, by means of the formulas:

$$
\begin{align*}
& \hat{\Omega}_{u}=\Omega_{u}+{ }_{p} \Omega_{u} \tag{1.18}\\
& \left(\nabla^{0} R\right)(X, Y ; Z, T)=\left\langle\hat{\Omega}_{u}\left(u^{-1} X, u^{-1} Y\right) u^{-1} T, u^{-1} Z\right\rangle_{\nu} \tag{1.19}\\
& \iota_{X} \nabla^{s+1} R=\Gamma_{u}\left(u^{-1} X\right) \cdot \nabla^{s} R \tag{1.20}
\end{align*}
$$

where ι_{X} is the interior product and $\Gamma_{u}\left(u^{-1} X\right)$ acts as a derivation.

Remark 1.2. The Riemannian curvature tensor of M at X w.r.t. u is given by (1.19) even if M is degenerated.

2. 9 -triples

Definition 2.1. Let g be a subalgebra of $\mathfrak{o}_{\nu}(n)$. We say that $(\mathfrak{p}, \Gamma, \bar{\Omega})$ is a \mathfrak{g}-triple if $\mathfrak{o}_{\nu}(n)=\mathfrak{g} \oplus \mathfrak{p}, \Gamma: \mathbb{R}^{n} \rightarrow \mathfrak{p}$ is a linear map and $\bar{\Omega}: \mathbb{R}^{n} \times \mathbb{R}^{n} \rightarrow \mathrm{~g}$ is a bilinear antisymmetric map, such that if we formally replace g with \mathfrak{g}_{u}, Γ with Γ_{u}, and $\bar{\Omega}$ with Ω_{u}, then (1.13)-(1.16) will hold true.

If the restriction of the Killing form to g is nondegenerate, we say that the g triple $\left(g^{\perp}, \Gamma, \bar{\Omega}\right)$ is a Cartan triple.

Theorem 2.1. Let \mathfrak{g} be a subalgebra of $\mathrm{D}_{\nu}(n)$, and let $(\mathfrak{p}, \Gamma, \bar{\Omega})$ be a g-triple. Then there is a l.h.pR (M, g) unique up to a local isometry, a frame $u \in O M$, and a transitive Killing algebra \mathfrak{f} on M, such that $\lambda_{u}\left(\mathfrak{f}_{\pi(u)}\right)=\mathrm{g}$, and w.r.t. the decomposition $\mathfrak{0}_{\nu}(n)=\mathfrak{g} \oplus \mathfrak{p}, \Gamma_{u}=\Gamma$ and $\Omega_{u}=\bar{\Omega}$.

We shall say that (M, g) in Theorem 2.1 is the local geometric realization of the 9 -triple $(\mathfrak{p}, \Gamma, \bar{\Omega})$.

Proof. We consider the Lie algebra $\mathfrak{f}=\left(\mathrm{g} \oplus \mathbb{R}^{n},[],\right)$, where [,] is defined in (1.10)-(1.12), with ($\mathfrak{g}, \mathfrak{p}, \Gamma, \bar{\Omega}$) in place of ($g_{u}, \mathfrak{p}, \Gamma_{u}, \Omega_{n}$). It is obvious that g is a Lie subalgebra of f. Let G be the connected subgroup with Lie algebra g of the simply connected group K, of Lie algebra \mathfrak{f}. Let $\theta \oplus \omega \in \mathscr{D}^{1}\left(K, \mathbb{R}^{n} \oplus \mathfrak{g}\right)$ be the canonical form of K, and let $V=\exp \Delta \cdot \exp U$, with Δ, U open neighborhoods of the zeros of \mathbb{R}^{n} and g, and Δ such that through each point of $\exp \Delta$ there passes a unique leaf of the foliation F defined on V by $\theta=0$.

As $\|\theta\|_{\nu}^{2}$ is constant along the leaves of F, this tensor field on V is projectable to a pseudo-Riemannian metric g on $M=V / F$.

The tangent space at x, the leaf of 1_{K}, is isomorphic to the quotient $\mathfrak{f} / \mathrm{g}$. We shall consider then the frame u of components $u_{i}=e_{i}+\mathfrak{g}$, which belongs to $O M_{x}$.

Let α be the natural local K transformation group of M, defined on some open neighborhood of $1_{K} \times M$ in $K \times M$, induced by the left translation of K. We claim that α is almost effective. Suppose it is not. Then there exists a nonzero $\xi \in \mathfrak{g}$ and a sequence $t_{n} \neq 0$, converging to zero, such that $\alpha_{\exp t_{n} \xi}$ is the identity of some neighborhood of the leaf of 1_{K} in M.

It follows that there exists a neighborhood N of $0 \in \mathbb{R}^{n}$, such that for each $X \in N$, there is some $\eta_{n} \in \mathfrak{g}$, such that $\exp t_{n} \xi \cdot \exp X=\exp X \cdot \exp \eta_{n}$. This condition expresses the fact that we remain on the same leaf of F, as we act by $\exp t_{n} \xi=\mathrm{id}$. Then due to a consequence of the Campbell-Hausdorff formula [21, Th. 5.16], if we change X in the above formula to $t_{n} X$, we deduce that $t_{n}^{2}[\xi, X]+\mathrm{o}\left(t_{n}^{3}\right)=-t_{n} \xi+\eta_{n} \in g$.

Then $[\xi, X]$ is in \mathfrak{g}, as a limit of elements in \mathfrak{g}, and ad $\xi\left(\mathbb{R}^{n}\right) \subseteq \mathfrak{g}$. From (1.11), this is possible iff $\xi=0$, thereby proving our claim and showing that $\lambda_{u}\left(\mathfrak{f}_{x}\right)=\mathfrak{g}$.

Further, since the Lie algebras \mathfrak{f} and \mathfrak{f}_{u} associated to the \mathfrak{g}-triples $(\mathfrak{p}, \Gamma, \bar{\Omega})$ and ($\mathfrak{p}_{u}, \Gamma_{u}, \Omega_{u}$) have the same structure equations, $\Gamma=\Gamma_{u}$ and $\bar{\Omega}=\Omega_{u}$.

Let K be the simply connected Lie group of Lie algebra $\mathfrak{f}=\left(\mathfrak{g} \oplus \mathbb{R}^{n},[],\right)$, associated to the \mathfrak{g}-triple ($\mathfrak{p}, \Gamma, \bar{\Omega}$), and let G be the connected subgroup of K, of Lie algebra \mathfrak{g}. If G is closed in K, then, as in the proof of Theorem 1.4., $\|\theta\|_{\nu}^{2}$ is projectable to a pseudo-Riemannian metric g on K / G. We shall say that (K / G, $g)$ is the geometric realization of the closed \mathfrak{g}-triple $(\mathfrak{p}, \Gamma, \bar{\Omega})$.

The geometric realization of a \mathfrak{g}-triple is simply connected; moreover, if \mathfrak{f} has an n-dimensional subalgebra \mathfrak{l}, which is transverse to \mathfrak{g}, then the geometric realization is diffeomorphic to the simply connected group of Lie algebra l.

Until now, there were no relevant differences between the Riemannian and the pseudo-Riemannian case. However, if we try to generalize the equivalence criterion of section 3 in Ref. [15], we encounter some difficulties even for n.l.h.pR.'s, since the nondegeneracy of a transitive Killing algebra may not be inherited from the whole Lie algebra of Killing vector fields on $M, \mathfrak{f}(M)$. All we can prove is the following:

Theorem 2.2. Let M_{1}, M_{2} be two l.h.pR.'s. Then there is a local isometry from M_{1} to M_{2}, iff there are some frames $u_{1} \in O M_{1}, u_{2} \in O M_{2}$, such that $\lambda_{u_{1}}\left(\mathfrak{f}\left(M_{1}\right)_{m u_{1}}\right)=\lambda_{u_{2}}\left(\mathfrak{f}\left(M_{2}\right)_{m u_{2}}\right)=\mathfrak{g}$ and there is a complement \mathfrak{p} of \mathfrak{g} in $\mathfrak{0}_{\nu}(n)$, so that w.r.t. the decomposition $\mathfrak{0}_{\nu}(n)=\mathfrak{g} \oplus \mathfrak{p}$, the Cartan-Singer maps and the g -parts of the curvature of M_{1} and M_{2} are equal.

For $\alpha=1,2$, let \mathfrak{f}_{α} be a transitive Killing algebra of some n-dimensional 1.h.pR. M_{α} of index ν, and let $u_{\alpha} \in O M_{\alpha}$.

Corollary 2.1. If M_{1} is locally isometric to M_{2}, their curvature tensors $R_{1, u_{1}}$, $R_{2, u_{2}}$, given by (1.19), are conjugate under the natural action of $O_{\nu}(n)$ on the space of curvature tensors.

If \mathfrak{f} is a transitive Killing algebra of $M, u \in O M_{x}$ and $\hat{\Omega}_{u}$ is defined in (1.18), the Ricci form associated with (\mathfrak{f}, u) is the bilinear symmetric form ${ }_{\mu} \rho$: $\mathbb{R}^{n} \times \mathbb{R}^{n} \rightarrow \mathbb{R}$, given by:

$$
\begin{equation*}
{ }_{u} \rho\left(e_{i}, e_{j}\right)=\operatorname{Tr}\left(x \rightarrow \hat{\Omega}_{u}\left(x, e_{i}\right) e_{j}\right) . \tag{2.1}
\end{equation*}
$$

The Ricci polynomial Ric is defined by:

$$
\begin{equation*}
\operatorname{Ric}(t)=\operatorname{det}\left({ }_{u} \rho\left(e_{i}, e_{j}\right)-t_{\nu} \delta_{i j}\right), \tag{2.2}
\end{equation*}
$$

where ${ }_{\nu} \delta_{i j}=\delta_{i j}$ for $i \leqslant n-\nu$ and ${ }_{\nu} \delta_{i j}=-\delta_{i j}$ for $i>n-\nu$.
Remark 2.1. $\operatorname{Ric}(t)$ is an invariant of the local isometry class of the 1.h.pR. (M, g).

Remark 2.2. If \mathfrak{f} is a nonsingular Killing algebra of (M, g), and if $\mathfrak{g}=\lambda_{u}\left(\mathcal{f}_{x}\right)$, then, as in the Riemannian case, one may find $\lambda_{u}\left(\tilde{f}(M)_{x}\right)$, starting from the Cartan triple ($\mathrm{g}^{\perp}, \Gamma_{u}, \bar{\Omega}_{u}$), as follows:

$$
\lambda_{u}\left(\mathscr{f}(M)_{x}\right)=\left\{\xi \in \mathfrak{o}_{\nu}(n), \xi \cdot \nabla^{s} R=0, \forall s \in \mathbb{N}\right\} .
$$

In this case, one may label as g_{s} the vector subspace $\left\{\xi \in \mathfrak{o}_{\nu}(n), \xi \cdot \nabla^{p} R=0\right.$, $p \leqslant s\}$ of $\mathfrak{0}_{\nu}(n)$, and define the Singer invariant to be the largest s, such that $\mathrm{g}_{s} \neq \mathrm{g}_{\infty}$.

3. Examples

This section provides applications of the mechanics of \mathfrak{g}-triples. A first example proves the consistency of Theorem 1.3.

In order to obtain examples relevant to that theorem, it is natural to look for a transitive Killing algebra, whose linear isotropy subalgebra is the Lie algebra of a nonclosed Lie subgroup of $\mathrm{O}_{\nu}(n)$.

As a vector space, $\mathfrak{o}_{\nu}(n)$ has the basis $\left(f_{i}^{j}\right)_{1 \leqslant i<j \leqslant n}$,

$$
\begin{equation*}
f_{i}^{j}=E_{i}^{j}-{ }_{\nu} \delta_{i j} E_{j}^{i} . \tag{3.1}
\end{equation*}
$$

In our example $n=5$ and $\nu=3$, and we start from the maximal toral subalgebra $\mathrm{t}=\mathbb{R} f_{1}^{2} \oplus \mathbb{R} f_{3}^{4}$ of $\mathrm{D}_{3}(5)$, tangent to the torus T.

Let r be a positive irrational number. Then, the one-parameter subgroup G_{r} of the Lie algebra $g_{r}=\mathbb{R}\left(f_{1}^{2}+f_{3}^{4}\right)$ is dense in T, and therefore we will look for a Cartan triple ($\mathfrak{g}, \Gamma, \bar{\Omega}$) with $\mathfrak{g}=\mathrm{g}_{r}$. Let $f=f_{1}^{2}+f_{3}^{4}$.

One of the solutions for (1.16)-(1.18) is

$$
\begin{align*}
& \Gamma\left(e_{1}\right)=b f_{2}^{5}, \quad \Gamma\left(e_{2}\right)=-b f_{1}^{5}, \quad \Gamma\left(e_{3}\right)=d f_{4}^{5} \\
& \Gamma\left(e_{4}\right)=-d f_{3}^{5}, \quad \Gamma\left(e_{5}\right)=0 \\
& \bar{\Omega}\left(e_{1}, e_{2}\right)=b\left(\frac{b}{1+r^{2}}+\frac{2 d}{r}\right) f \\
& \bar{\Omega}\left(e_{3}, e_{4}\right)=-d\left(\frac{r d}{1+r^{2}}+2 b\right) f, \quad b>0, d>0, b r-d<0 \tag{3.2}
\end{align*}
$$

The corresponding transitive Killing algebra $\mathfrak{f}=\left(g \oplus \mathbb{R}^{5},[],\right)$ splits as a direct sum of two copies of $\mathfrak{\mathfrak { u }}(2), \mathfrak{f}=\mathfrak{f}_{1} \oplus \mathfrak{f}_{2}$, where $\mathfrak{f}_{1}=\operatorname{Span}\left(e_{1}, e_{2}, r e_{5}-d f\right)$, $\mathfrak{f}_{2}=\operatorname{Span}\left(e_{3}, e_{4},-e_{5}+b f\right)$.

The subalgebra $\mathfrak{F}=\mathbb{R}\left(-e_{5}+b f\right) \oplus \mathbb{R}\left(r e_{5}-d f\right)$ is toral in \mathfrak{l}. The Lie subgroup of H of the Lie algebra g, of the simply connected group $K=S U(2) \times \operatorname{SU}(2)$ of the Lie algebra \mathfrak{f}, is dense in the torus S of the Lie algebra $\mathfrak{3}$.

Theorem 3.1. For any positive irrational r, the local geometric realization of the Cartan triple $\left(g_{n}, \Gamma, \bar{\Omega}\right)$, defined in (3.2), is a five-dimensional n.l.h.pR. of index 3, that is not locally isometric to a homogeneous space.

Remark 3.1. (See Ref. [23] for a Riemannian analogue.) A local geometric realization of the Cartan triple (3.2) may be viewed as a transverse manifold M to the pseudo-Riemannian foliation D_{r} of $S U(2) \times S U(2)$, with the left invariant metric g defined by the ad \mathfrak{h}-invariant bilinear form B on $\mathfrak{S u}(2), B\left(\left(x_{1}, y_{1}\right),\left(x_{2}\right.\right.$, $\left.\left.y_{2}\right)\right)=-\lambda \operatorname{Tr}\left(x_{1}, y_{1}\right)+\mu \operatorname{Tr}\left(x_{2}, y_{2}\right)$,

$$
\lambda=\frac{r}{b(d-b r)}, \quad \mu=\frac{1}{d(d-b r)}
$$

D_{r} is the Lie foliation generated by the diagonal matrices

$$
\left(\begin{array}{llll}
\mathrm{e}^{\mathrm{i} t} & & & \\
& \mathrm{e}^{-\mathrm{i} t} & & \\
& & \mathrm{e}^{\mathrm{i} r t} & \\
& & & \mathrm{e}^{-\mathrm{i} r t}
\end{array}\right)
$$

and the factor metric g.
Our next objective is to find the three-dimensional degenerate l.h.pR.'s. Let us denote $f_{1}^{2}+f_{1}^{3}$ by f. In order to exhaust all the possibilities, we need the following elementary fact:

Lemma 3.1. A degenerate Lie subalgebra of $\mathfrak{o}_{1}(3)$ is conjugate to $m(3)=\operatorname{Span}(f$, f_{2}^{3}) or to $\mathfrak{h} t=\mathbb{R} f$.

It may be shown that the local geometric realization of an $\mathfrak{m}(3)$-triple has constant negative curvature.

If one identifies $\mathfrak{D}_{1}(3)$ with the Lie algebra of the full group of isometries of the hyperbolic plane, $\mathfrak{h t}$ is the Lie algebra of the horocyclic translations [6, p. 3].

We list the $\mathfrak{h t}$-triples. Since the Killing form vanishes along $\mathfrak{h t}$, we shall take for its complement in $\mathfrak{D}_{1}(3)$, the plane $\mathfrak{p}=\operatorname{Span}\left(f_{1}^{3}, f_{2}^{3}\right)$.
Any $\mathfrak{h t}$-triple of the form ($\mathfrak{p}, \Gamma, \bar{\Omega}$) is given by

$$
\begin{equation*}
\Gamma\left(e_{1}\right)=a f_{2}^{3}, \quad \Gamma\left(e_{2}\right)=\Gamma\left(e_{3}\right)=-a f_{1}^{3}+b f_{2}^{3}, \quad \bar{\Omega}\left(e_{i}, e_{j}\right)=\Omega_{i j} f, \tag{3.3}
\end{equation*}
$$

where

$$
\begin{equation*}
\Omega_{12}-\Omega_{13}+a^{2}=0, \quad \Omega_{23}=a b=0 . \tag{3.4}
\end{equation*}
$$

From (1.9) it follows that:

$$
\begin{equation*}
\tilde{\Omega}\left(e_{1}, e_{2}\right)=\tilde{\Omega}_{12} f, \quad \tilde{\Omega}\left(e_{1}, e_{3}\right)=\tilde{\Omega}_{13} f, \quad \tilde{\Omega}\left(e_{2}, e_{3}\right)=\Omega_{23} f \tag{3.5}
\end{equation*}
$$

If $a \neq 0$, the transitive Killing algebra associated to the $\mathfrak{b t}$-triple $(\mathfrak{p}, \Gamma, \bar{\Omega})$, $\mathfrak{f}=\mathfrak{h t} \oplus \operatorname{Span}\left(e_{1}, e_{2}, e_{3}\right)$, has the structure equations

$$
\begin{align*}
& {\left[e_{1}, e_{2}\right]=2 a e_{3}+\left(a^{2}-\Omega_{12}\right) f, \quad\left[e_{1}, e_{3}\right]=a\left(e_{2}+a_{3}\right)-\Omega_{12} f,} \\
& {\left[e_{2}, e_{3}\right]=-a e_{1}, \quad\left[f, e_{1}\right]=e_{3}-e_{2}+a f, \quad\left[f, e_{2}\right]=\left[f, e_{3}\right]=e_{1} .} \tag{3.6}
\end{align*}
$$

By (1.17) and (1.18) the curvature of the local geometric realization is

$$
\begin{align*}
& \hat{\Omega}\left(e_{1}, e_{2}\right)=\Omega_{12} f_{1}^{2}+\left(\Omega_{12}+a^{2}\right) f_{1}^{3}, \quad \hat{\Omega}\left(e_{2}, e_{3}\right)=a^{2} f_{2}^{3}, \\
& \hat{\Omega}\left(e_{1}, e_{3}\right)=\left(\Omega_{12}+a^{2}\right) f_{1}^{2}+\left(\Omega_{12}+2 a^{2}\right) f_{1}^{3}, \tag{3.7}
\end{align*}
$$

with the Ricci polynomial

$$
\begin{equation*}
\operatorname{Ric}(t)=\left(t+2 a^{2}\right)^{3} . \tag{3.8}
\end{equation*}
$$

Proposition 3.1. There exist a locally homogeneous Lorentz manifold (l.h.L.) which has the Ricci polynomial of a space of constant negative curvature, but is not of constant negative curvature.

Proof. This is a three-dimensional l.h.pR. which apparently is not dependent only on the Ricci polynomial.
From (3.7), it follows that the local geometric realization M of a $\mathfrak{h t}$-triple (\mathfrak{p}, $\Gamma, \bar{\Omega}$) with $a \neq 0$ has the possible nonzero components of the curvature tensor given by

$$
R_{1212}=\Omega_{12}, \quad R_{1213}=\Omega_{12}+a^{2}, \quad R_{1313}=\Omega_{12}+2 a^{2}, \quad R_{2323}=a^{2} .
$$

Let $\left[x_{1}, x_{2}, x_{3}\right]$ be the dual (plückerian) coordinates of some nondegenerate tangent plane $\pi \in G_{2}\left(T_{x} M\right)$, w.r.t. U, the orthoframe given by Theorem 2.1. The sectional curvature of π is (see Ref. [2]):

$$
\begin{equation*}
K_{x}\left[x_{1}, x_{2}, x_{3}\right]=-a^{2}+\left(\Omega_{12}+a^{2}\right) \frac{\left(x_{2}-x_{3}\right)^{2}}{x_{3}^{2}-x_{1}^{2}-x_{2}^{2}} \tag{3.9}
\end{equation*}
$$

showing that the space has constant curvature iff $\Omega_{12}+a^{2}=0$.
Thus, K_{x} is a rational function defined on the complement of the oval $x_{3}^{2}-$ $x_{1}^{2}-x_{2}^{2}=0$ (the null locus) in $\mathbb{P}^{2} \mathbb{R}$, whose image is the union of two connected subsets I_{t}, I_{s}, of \mathbb{R}, corresponding to the timelike and the spacelike planes, respectively. The conic $Q=0$ is the homaloidal conic of the point x. Of course, I_{t} and I_{s} are invariant under local isometries, and therefore they are local invariants of a 1.h.L.

If $\Omega_{12}+a^{2}>0, I_{t}=\left[-a^{2}, \infty\right)$, and if $\Omega_{12}+a^{2}<0$ then, $I_{t}=\left(-\infty,-a^{2}\right]$, which proves that there are at least three pairwise nonisometric l.h.L.'s, having the Ricci polynomial of a space of constant negative curvature.

If $a=0, \mathfrak{f}=\mathfrak{h} t \oplus \operatorname{Span}\left(e_{1}, e_{2}, e_{3}\right)$ has the structure equations

$$
\begin{align*}
& {\left[e_{1}, e_{2}\right]=\left[e_{1}, e_{3}\right]=-\Omega_{12} f, \quad\left[e_{2}, e_{3}\right]=-b\left(e_{3}-e_{2}\right),} \\
& {\left[f, e_{1}\right]=e_{3}-e_{2}, \quad\left[f, e_{2}\right]=\left[f, e_{3}\right]=e_{1}+b f .} \tag{3.10}
\end{align*}
$$

For $b=0, \mathfrak{t}=\mathfrak{h} \oplus \operatorname{Span}\left(e_{1}, e_{2}, e_{3}\right)$ is a reductive decomposition, such that the geometric realization is a Lorentz symmetric space that is indecomposable and does not have constant curvature if $\Omega_{12} \neq 0$; this is immediate, since the Ricci polynomial is t^{3} and the curvature is not zero.

Let K be the simply connected group of Lie algebra f. The connected Lie subgroup of the Lie algebra $\mathfrak{h t}$ is closed in K. We shall now that that there are precisely three distinct geometric realizations of this type.

Indeed, the homoloidal conic is the double line $\left(x_{2}-x_{3}\right)^{2}=0$, tangent to the null locus, and the sectional curvature is given by (3.9), where $a=0$. Then, if $\omega \beta<0$, and M, M^{\prime} are two local geometric realizations that are associated with the parameters $\Omega_{12}=\omega$ and $\Omega_{12}=\beta$, respectively, one may assume, w.l.o.g., that $I_{t}(M)=[0, \infty)$ and $I_{t}\left(M^{\prime}\right)=(-\infty, 0]$, and therefore M and M^{\prime} are not locally isometric. We shall say that the geometric realization of an $\mathfrak{h t}$-triple with $a=0$ is $\mathrm{a}+$ space, if $\Omega_{12}>0$, and is a - space is $\Omega_{12}<0$.

It is known that a Riemannian manifold modelled on an irreducible symmetric space is locally symmetric [5]. The Lorentzian analogue of this statement fails to be true:

Proposition 3.2. Let α be a real root of $\alpha^{2}-\alpha b+\Omega_{12}=0$. Let Sol(b, α) be the Lie group of affinities of the real plane, generated by the translations $x^{\prime}=x+u$, $y^{\prime}=y+v$, and by the dilations $x^{\prime}=\exp (t) x, y^{\prime}=\exp (b t / \alpha) y$, together with the Lorentz metric

$$
\begin{equation*}
g=\exp (2 t) \cdot \mathrm{d} u^{2}+\frac{1}{\alpha^{2}}\left(2 \exp (b t / \alpha) \mathrm{d} t \cdot \mathrm{~d} v-\mathrm{d} t^{2}\right) \tag{3.11}
\end{equation*}
$$

If $b \Omega_{12} \neq 0$, then $\operatorname{Sol}(\mathrm{b}, \alpha)$ is modelled on a symmetric space, without being locally symmetric.

Proof. If $\Omega_{12} \neq 0$, the geometric realization of the $\mathfrak{h t}$-triple ($\mathfrak{p}, \Gamma, \bar{\Omega}$), defined by (3.3)-(3.5), with $a=0 \neq \Omega_{12}$, has $\mathfrak{f}=\mathfrak{h} \mathfrak{t} \oplus \operatorname{Span}\left(e_{1}, e_{2}, e_{3}\right)$ as maximal Killing algebra. For a fixed Ω_{12}, all these spaces have the same curvature tensor w.r.t. the frame (e_{1}, e_{2}, e_{3}). We are looking for a Lorentz Lie group structure on such a space. Supposing $e_{1}^{\prime}, e_{2}^{\prime}, e_{3}^{\prime}$, with $e_{i}^{\prime}=e_{i}+\alpha_{i} f$, generate a subalgebra of \mathfrak{f}. From (3.10) it follows that such a subalgebra exists iff $b^{2}-4 \Omega_{12}>0$, and in this case α_{1} is a solution of $\alpha^{2}-\alpha b+\Omega_{12}=0$ and $\alpha_{2}=\alpha_{3}$. Assume for simplicity that $\alpha_{3}=0$. The Lie subalgebra $\mathfrak{l}=\operatorname{Span}\left(e_{1}^{\prime}, e_{2}^{\prime}, e_{3}^{\prime}\right)$ is solvable and centreless,

$$
\left[e_{1}^{\prime}, e_{2}^{\prime}\right]=\left[e_{1}^{\prime}, e_{3}^{\prime}\right]=\alpha e_{1}^{\prime}, \quad\left[e_{2}^{\prime}, e_{3}^{\prime}\right]=b\left(e_{2}^{\prime}-e_{3}^{\prime}\right)
$$

and then the canonical form $\theta=\theta^{i} e_{i}^{\prime}$ of L, the simply connected Lie group of Lie algebra \mathfrak{l}, satisfies the system

$$
\mathrm{d} \theta^{1}+\alpha \theta^{1} \wedge\left(\theta^{2}+\theta^{3}\right)=0, \quad \mathrm{~d} \theta^{2}+b \theta^{2} \wedge \theta^{3}=0, \quad \mathrm{~d}\left(\theta^{2}+\theta^{3}\right)=0
$$

L is the geometric realization of our $\mathfrak{h t}$-triple, and then $e^{\prime}=\left(e_{1}^{\prime}, e_{2}^{\prime}, e_{3}^{\prime}\right)$ is a field of orthoframes of L. A straightforward calculation shows that $\left(\nabla_{e_{2}} R\right)\left(e_{1}^{\prime}, e_{2}^{\prime}, e_{1}^{\prime}\right.$, $\left.e_{3}^{\prime}\right)=-2 b \Omega_{12} \neq 0$, showing that L is not a symmetric space.

Since \mathfrak{l} is centreless it is isomorphic to its adjoint representation. Let

$$
X_{1}=\operatorname{ad} e_{1}^{\prime}, X_{2}=\operatorname{ad} \frac{1}{\alpha}\left(e_{2}^{\prime}-e_{3}^{\prime}\right), X_{3}=\operatorname{ad} \frac{1}{\alpha} e_{3}^{\prime}
$$

and let $A=\exp \left(u X_{1}\right) \exp \left(\nu X_{2}\right) \exp \left(t X_{3}\right)$ be an arbitrary element in the Lie subgroup of $G I(3, \mathbb{R})$ generated by ad \mathfrak{l}. Then the canonical form $\Theta=A^{-1} d A$ is easily seen to be

$$
\exp (t) \mathrm{d} u X_{1}+\exp (b t / \alpha) \mathrm{d} v X_{2}+\mathrm{d} t X_{3}=\operatorname{ad}(\theta)
$$

and we identify $\left(\operatorname{Ad}(L),\|\theta\|_{1}^{2}\right)$ with $\operatorname{Sol}(\mathrm{b}, \alpha)$.
Proposition 3.3. Suppose $\beta \neq 0$ is the imaginary part of a complex root of the equation $z^{2}-b z+\Omega_{12}=0$. Then $D(b, \beta)=\left(\mathbb{R}^{3}, g\right)$ where g is given by

$$
\begin{equation*}
g=\exp (b x)\left(\cos ^{2} \beta x \cdot(\mathrm{~d} y)^{2}+2 \mathrm{~d} x \cdot \mathrm{~d} t\right)-(\mathrm{d} x)^{2} \tag{3.12}
\end{equation*}
$$

is a degenerate l.h.pR.Any three-dimensional degenerate l.h.pR. is locally isometric to some $D(b, \beta)$.

Proof. Take an $\mathfrak{h t}$ triple ($\mathfrak{p}, \Gamma, \bar{\Omega}$), defined by (3.3)-(3.5) with $a=0<\Omega_{12}$, $b^{2}-4 \Omega_{12}<0$. As in the proof of Proposition 3.2, $=\mathbb{R} f \oplus \operatorname{Span}\left(e_{1}, e_{2}, e_{3}\right)$ is the
maximal Killing algebra of the geometric realization of ($\mathfrak{p}, \Gamma, \bar{\Omega}$). The Lie algebra \mathfrak{f} has no subalgebra transverse to $\mathfrak{h t}$, and $\mathfrak{h t}$ is degenerate w.r.t. the Killing form. To end the proof, it is enough to show that the geometric realization of this $\mathfrak{g t}$ triple is $D(b, \beta)$.

We claim that the geometric realization is diffeomorphic to \mathbb{R}^{3}.
Our $\mathfrak{h t}$-triple is closed, since \mathfrak{f} is solvable. Let \mathfrak{g} be the derived algebra of \mathfrak{f}; this is the three-dimensional nilpotent Lie algebra. Let K be the simply connected group of Lie algebra f, and let G be the subgroup of Lie algebra g and $H=\exp (\mathbb{R} f)$.

Since G is a codimension 1 Lie subgroup of the solvable group $K, K / G$ is \mathbb{R}, and since G is $N i l, G / H$ is easily seen to be \mathbb{R}^{2}. The projections defining these quotients being trivial fibrations, let $k: \mathbb{R} \rightarrow K, g: \mathbb{R}^{2} \rightarrow G$ be differentiable sections of these fibrations. Then the map $(a, b, c) \rightarrow k(a) g(b, c) H$ is a diffeomorphism from \mathbb{R}^{3} to K / H, proving our claim.

Let $e_{4}=f$ and let $\theta=\theta^{i} e_{i}$ be the canonical form of K. (3.10) yields

$$
\begin{align*}
& \mathrm{d} \theta^{1}-\left(\theta^{2}+\theta^{3}\right) \wedge \theta^{4}=0 \\
& \mathrm{~d} \theta^{4}-\left(\Omega \theta^{1}-b \theta^{4}\right) \wedge\left(\theta^{2}+\theta^{3}\right)=0 \\
& \mathrm{~d} \theta^{2}+b \theta^{2} \wedge \theta^{3}+\theta^{1} \wedge \theta^{4}=0 \\
& \mathrm{~d} \theta^{3}-b \theta^{2} \wedge \theta^{3}-\theta^{1} \wedge \theta^{4}=0 \tag{3.13}
\end{align*}
$$

with the global solution

$$
\begin{align*}
& \theta^{2}=\exp (b x)(\beta u \cdot \mathrm{~d} v+\mathrm{d} t) \\
& \theta^{2}+\theta^{3}=\mathrm{d} x \tag{3.14}\\
& \left(-\frac{1}{2} b+\mathrm{i} \beta\right) \theta^{1}+\theta^{4}=\beta \exp \left(\frac{1}{2} b+\mathrm{i} \beta\right) x \cdot(\mathrm{~d} u+\mathrm{i} \mathrm{~d} v)
\end{align*}
$$

The Pfaffian system $\theta^{1}=\theta^{2}=\theta^{3}=0$ has the first integrals x, y, z, where

$$
\begin{equation*}
y=v+u \tan (\beta x), \quad z=-\frac{1}{2} \beta u^{2} \tan (\beta X)+t \tag{3.15}
\end{equation*}
$$

Then, on K the projectable tensor

$$
g=\left(\theta^{1}\right)^{2}+\left(2 \theta^{2}-\left(\theta^{2}+\theta^{3}\right)\right)\left(\theta^{2}+\theta^{3}\right)
$$

is given by (3.12).
Remarks. The Lorentz spaces in Propositions 3.2, 3.3, are locally the only possible three-dimensional nonsymmetric homogeneous spaces modelled on a symmetric space. Together with the lists in Refs. [6,] or [18], they give the full picture of the local metric structures of homogeneous Lorentz three-dimensional manifolds.

Acknowledgements

This paper is based on a portion of the author's dissertation. It is a privilege to thank Izu Vaisman for his support. I would also like to thank Jiri Dadok and Pierre Molino for useful conversations.

References

[1] J.K. Beem and S.G. Harris, Nongeneric null vectors, Gen. Rel. Grav. 25(9) (1993) 963-975.
[2] J.K. Beem and P.E. Parker, Values of the pseudoriemannian sectional curvature, Comment. Math. Helv. 59 (1984) 319-331.
[3] D. Bini, P. Carini and R. Jentzen, Gravitoelectromagnetism: application to rotating Minkowski, Gödel and Kerr spacetimes, Sixth Marcel Grossman Meeting, Part A, B (Kyoto, 1991) (World Scientific, River Edge, NJ, 1992) pp. 1622-1624.
[4] E. Cartan, Leçons sur la géométrie des espaces de Riemann (Gauthier-Villars, 1946).
[5] M. Cahen, J. Leroy, M. Parker, F. Tricerri and L. Vanhecke, Lorentz manifolds modelled on a Lorentz symmetric space, J. Geom. Phys. 7 (1990) 571-591.
[6] L.A. Cordero and P.E. Parker, Left invariant Lorentzian metrics on 3 dimensional Lie groups, submitted for publication.
[7] P.M. Gadea and J.A. Oubina, Homogeneous pseudo-Riemannian structures and homogeneous almost paraHermitian structures, Houston J. Math. 18 (3) (1992) 449-465.
[8] T. Koike, M. Tanimoto and A. Hosoya, Compact homogeneous universes, to appear in J. Math. Phys.
[9] O. Kowalski, Counter example to the second "Singer's Theorem', Ann. Global Anal. Geom. 8 (1990) 211-214.
[10] L. Nicolodi and F. Tricerri, On two theorems of I.M. Singer, Ann. Global Anal. Geom. 8 (1990) 193-209.
[11] M. Novelo, N.F. Santalo and M.E.X. Guimaraes, Sinchronized frames for Gödel universe, Gen. Rel. Grav. 19(2) (1987) 137-165.
[12] B. O'Neill, Semi-Riemannian Geometry (Academic Press, 1983).
[13] F.M. Paiva and C. Romero, The limits of Brans-Diecke spacetime: a coordinate free approach, Gen. Rel. Grav. 25(12) (1993) 1305-1318.
[14] R. Palais, A global formulation of the Lie theory of transformation Groups, Mem. Amer. Math. Soc. No. 22 (1957).
[15] V. Patrangenaru, Locally homogeneous Riemannian manifolds and Cartan triples, Geometria Dedicata 50 (1994) 143-164.
[16] V. Patrangenaru, Invariants of locally homogeneous pseudoRiemannian spaces, Preprint Series in Mathematics, INCREST, No. 6/1987.
[17] L.O. Piementel and J. Socorro, Bianchi VI_{0} models in $N=2, D=2$ supergravity, Gen. Rel. Grav. 25 (11) (1993) 1159-1161.
[18] S. Rahmani, Métriques de Lorentz sur les groupes de Lie unimodulaires de dimension trois, J. Geom. Phys. 9 (1992) 295-302.
[19] M.P. Ryan and L.C. Shepley, Homogeneous Relativistic Cosmologies (Princeton University Press, 1975).
[20] N. Rosen, The energy of the universe, Gen. Rel. Grav. 26(3) (1994) 319-321.
[21] A. Sagle and R. Walde, Introduction to Lie Groups and Lie Algebras (Academic Press, 1973).
[22] F. Tricerri and L. Vanhecke, Variétés riemanniennes dont le tenseur de courbure est celui d'un espace symetrique irréductible, C.R. Acad. Sci. Paris Sér. I 302 (1986) 233-235.
[23] F. Tricerri, Locally homogeneous Riemannian manifolds, Rend. Sem. Mat. Univ. Pol. Torino 50 (4) (1993) 411-426.
[24] P.S. Wesson and L. Ponce de Leon, Kaluza-Klein theory and Machian cosmology, Gen. Rel. Grav. 26(6) (1994) 555-566.

