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Abstract 
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O. Introduction and Summary 

The homogeneous universes in space and time "display in simple form features 
of more complex expanding universes" [ 19, Ch. 7]. Some of these space-times 
remain a starting point for studies in general relativity or electromagnetism 
[ 3,11,13,20 ]. Equally important in cosmology is the local metric classification of 
three dimensional geometries viewed as slices in homogeneous spacetimes [ 8]. 
Wesson theory [ 24 ] and supergravity [ 17 ] are other reasons for a geometric study 
of locally homogeneous pseudo-Riemannian manifolds (l.h.pR.'s). Ref. [ 7 ] gives 
a recent account of the local theory of homogeneous pseudo-Riemannian structures. 

Our approach to the study of 1.h.pR.'s in their full generality is different, and 
uses as a starting point the theory of Cartan triples [ 15]. Since in some respects 
the extension of that method is obvious, proofs will be kept to a minimum. 

Suppose the connected pseudo-Riemannian manifold of index v, (M, g )  enjoys 
the following property: there is a Lie algebra f of Killing vector fields on M, so that 
each tangent vector of M extends to an element of f. Such a pseudo-Riemannian 
manifold is said locally homogeneous (1.h.pR.) and f is a transitive Killing algebra 
on M. 
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Let K be the abstract group associated with f and let u be an orthoframe at a 
given point x on M. Then one may exponentiate the infinitesimal action of a 
neighborhood of the identity in K into the orthoframe bundle OM (local version 
of IM c_ OM). The tangent map defines a monomorphism of f to the tangent space 
at u to OM. The structure equations of f are obtained by pulling back the structure 
equations of the Ambrose-Singer connection and tautological one-form on the 
reduced bundle. This gives a decomposition of f into g, ~ R", where g,, (the algebra 
of the structure group of the reduced bundle) is the u-isotropic representation of 
the isotropy algebra into the pseudo-orthogonal algebra o ~(n). The bracket on 
g, ~3 R" is a modification of the standard semiproduct with extra terms arising from 
two operators. One is the Cartan-Singermap F,: R" ~ 9, where # is a complement 
of g, in o ~( n ) (the orthocomplement w.r.t, the Killing form, whenever this exists); 
it is defined by pulling back the original o ~(n)-connection restricted to g,. The 
other operator in the definition of the bracket is the curvature at x w.r.t, u of the 
Ambrose-Singer connection, and is determined by F,, and by ~2,,, the g,-projection 
of the curvature along 9; (~0, F,,, $2,) is said to be a g,-triple. 

The 1.h.pR. (M, g )  is locally isometric to a homogeneous space, iffthe connected 
subgroup of Lie algebra g, of the abstract Lie group K of Lie algebra g , ~ R "  is 
closed in K. An example of l.h.p.R, which is locally nonisometric to a homogeneous 
space (see also Refs. [9,10,15,16] ) is displayed in Section 3. 

The converse is also true: if g is a subalgebra of o ~(n), and (9 , / ' ,  J~) is a g- 
triple, there is a l.h.pR. (M, g ) ,  unique up to a local isometry, called the local 
geometric realization of the g-triple, and a frame o E OM, for which g is the linear 
isotropy algebra w.r.t, o; moreover Fu = F and Ou = J'). As such, the problem of 
listing the n-dimensional l.h.pR.'s of index u amounts to the following algorithm: 

(a) find conjugacy classes of Lie subalgebras of o ~(n);  
(b) for a given Lie subalgebra g of o ~(n), find all g-triples. 
This method is not too effective if g = 0  (pseudo-Riemannian Lie groups). 

However, starting from the joint work of Cordero and Parker [ 6 ] and using Prop- 
ositions 3.2 and 3.3 in this study, the program can be carded out completely in 
dimension three, and even in this low-dimensional case there are examples of 
1.h.pR.'s that are degenerated (see Section 2 for a definition) or of nonsymmetric 
Lorentz manifolds, modelled on a symmetric space [5,16]. The + and - spaces 
which are introduced in Section 3 are typical examples of nonflat Lorentz manifolds 
with null nongeneric vectors [ 1 ]. 

1. Transitive Killing algebras of pseudo-Riemannian manifolds 

Assume g is a pseudo-Riemannian structure of index u on the n-dimensional 
simply connected manifold M and that ~ is a transitive Killing algebra on (M, g) .  
The kernel of the evaluation map eVx: f ~ TxM is the isotropy subalgebra fx of f at 
the point x. 
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If ~ e  fx, the local one-parameter group of isometrics generated by ~, (q~,~), has 
the fixed point x; consequently, for each u in OMx, one has a local one parameter 
subgroup A¢(t) of the pseudo-orthogonal group O~(n)  [ 12], defined as follows: 

Let f: U ---> M be a local isometry defined on an open subset U of M and let Lf: 
OU--* OM, be the left of f to the bundle of orthoframes. Then 

( Lq~) ( U ) = u . Ae( t ) . 

The linear isotropy representation of fx associated with the frame u is A,: 
f , .~ o,,(n), 

A,,(~) = A ~ ( 0 ) .  (1.1) 

Note that the main difference between the Riemannian and the other O~(n)-  
structures is that o ( n )  is the only compact form among the real forms o~(n) of 
o (n ,  C).  Therefore, the method of Cartan triples [ 15 ] can be restated in the pseudo- 
Riemannian case whenever the restriction of the Killing form to ~, = Au(~x) is 
nondegenerate. A 1.h.pR. is nondegenerate (n.l.h.pR.) if it admits at least one 
transitive Killing algebra f with a nondegenerate linear isotropy algebra .q,. Such a 

is said to be a nonsingular Killing algebra. 
Let ( K, H) be the pair consisting of the simply connected group of Lie algebra 

f, and of its connected Lie subgroup of Lie algebra ~x, and let oz be the maximal 
local K-transformation group on M [ 14] generated by ~. 

The map c~ lifts in a standard way to a local K-transformation group of isometrics 
without fixed points L ( a )  of (OM,  g v), where gv is the metric associated to the 
Levi-Civita connection, defined on the basic and fundamental vector fields in the 
following formulas [ 22 ] : 

gv(B, , (X) ,B , , (Y) )=(X,  Y ) , ,  X, Y e R " ,  

g v ( A , * , B , * ) = - T r A B ,  A , B ~ o , ( n ) ,  

gv (B , (X) .A ,* )=O,  X ~ R " , A E o ~ ( n ) ,  (1.2) 

where ( , ) ,  is the standard pseudo-Euclidean scalar product of index z,. 
Let D be an open neighborhood of O in f, such that ~p~(x) is defined for each 

~ D. If u ~ OMx, one may define the map J,: exp D --* OM, by 

J , (exp ~) =L(ol)  (exp ~, U) . (1.3) 

Then, if ~ is the Levi-Civita horizontal lift of ~, and ifA~ = L~-  V¢, we obtain, as 
in the Riemannian case: 

Proposition 1.1. Let [A¢.,], be the matrix of A¢.~ w.r.t, u. Then 

(d, J.) (s t) = ~(u) - ( [A¢~],,),*. (1.4) 

Let p be a complement of ~, in o , ( n ) .  From the previous proposition, it follows 
that d~J,, is one to one, so that if H is the horizontal Levi-Civita distribution, and if 
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o-,,: o ~( n ) ~ T,, O M  is the map A ~ A *, "tangent" to the right action of O ~(n) in 
OM,,, then 

m u = ( d l J u )  - 1  (Oru(~0)  + H , )  (1.5) 

is a direct summand of fx in L 
As such, the restriction of ev~ to m,  is a linear isomorphism from m~ to TxM. 

Then, if u = (x,  u~ . . . . .  o~), for each index i = 1 . . . . .  n, there is a unique ~ in mu, 
such that ~.(x) = ui. One may prove the following: 

Proposition 1.2.Let O~ ~ ~ ( OM,  R"),  w ~  ~ l ( OM,  o~(n) )  be the tautological 
J*u O, u * form and the Levi-Civita connection form on expD, and let ~0-- to= J~ to. 

Then ,,0 and ,,to are left invariant forms on exp D and rank ,0 = n. 

Further, uto splits into two vector-valued parts, ~to=,top~utoo. Let IIXII 2~,____ (X, 
X) ~. Then Cartan's theorem on the local structure of a homogeneous Riemannian 
space [4, Ch. XII] has the following analogue: 

Theorem 1.1. (1) There is a linear map F~: R ~ ---> p,, such that ,to~ = Fu o nO. 
(2) There is a neighborhood V of  1K, which is regular for  the foliation F, given 

by the system ~0 = O. F is a pseudo-Riemannian foliation with the transverse metric 
I1,, 011 ~ which induces a locally K-invariant metric g .  on the space o f  leaves V/ F. 

(3) Let Fk be the leaf o f F  through k. The map Fk--+ k( x)  is a local isometry 
between (V/F,  g~) and (M, g ) .  

We shall say that Fu is the Cartan-Singer map w.r.t, the decomposition 
o ~(n) = g ,  ~) p. Let us look for the Maurer-Cartan equations of ][ as a consequence 
of the structure equations of OM. 

First, let/-2 ~ ~ 2 (  O M, o ~(n))  be the Riemann curvature form, and let u/2 = 
. J, , /2.  ~/2 splits into its g, and p components: 

, /2=u/2~ ~ , / 2 p  • (1.6) 

Let (eb), b =  1 . . . . .  ½n(n-  1), be a basis of 0~(n) ,  such that the first elements 
lie in gu and the last ones in p; if a is the index for the elements in g~, let ,/2~ be 
the vector-valued form ! o,* ai A ~OJE,~. 2u~*iju v • • 

Since ,,/2~ are constant on exp D, one may define the bilinear skew symmetric 
map/2n: Rn × Rn--> g~ by 

/2,,(e/, ej) = , , / 2~%,  i , j = l  . . . . .  n .  (1.7) 

We call the map /2u the g,-curvature o f  M, w.r.t, the decomposition 
o ~(n) = ~ , ~ p .  Let T: • n × •, .._> R~,/): R~ X R~ ~ g,,, be defined by 

T(X, Y ) = F u ( Y ) X - F , ( X ) Y ,  (1.8) 

12(X, Y) =/2,,(X, Y) - [F~(X), F,(Y) ]g~. (1.9) 
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The bracket in (1.9) is the commutator. The following result is a consequence 
of the structure equations on OM, pulled back on K, as in Proposition 1.2. 

Theorem 1.2. f is isomorphic to the Lie algebra (g,~)R",  [ , ]): 

[~, n] = [~, nl ,  v~, v n ~ . ,  (1.1o) 

[~, x ] =  ~(x) + [~ , / ' . ( x ) ]~ . ,  V ~ g  , V X ~  ° , (1.11) 

[X, Y]= - T ( X ,  Y) -~2(X, Y) ,  VX,  V Y ~ " .  (1.12) 

R e m a r k  1.1 If the transitive Killing algebra is nonsingular, we shall always take 
for I0 = Pu the orthocomplement of ~, in o , ( n )  w.r.t, the Killing form. In this case, 
m ,  = m does not depend on u, and ~ = ~x~rn is a reductive decomposition. As in 
the Riemannian case, the canonical connection of the n.l.h.pR, M w.r.t, this decom- 
position has torsion T, and g,-part of the curvature ~. J2, is called the ~,-part of 
the curvature, and F, the Cartan-Singer map since the Ambrose-Singer connection 
refers to the decomposition o ~(n) = ~ , ~  ~ .  

As a consequence of Theorem 1.2, the Jacobi identities for f are as follows: 

[~, ~)(x, r ) ] - D ( ~ ,  Y)- D(x, ~Y) 

+ [[~, F.(X)]~., F.(Y) 1~. + [~, F.(T(X, Y)) ]~. 

+ [F,,(X), [~, Fu(Y)]~,]~, = 0 ,  V ~ e ~ ,  VX, V Y E R " ;  (1.13) 

.O(T(X, Y), Z) - [.O(X, V), F . (Z)  ]~. = 0 ,  
cycl 

VX, VY, VZ e R" ; (1.14) 

D(X, Y ) ( Z ) - T ( T ( X ,  Y) Z ) = 0 ,  
cycl 

VX, VY;VZ E R" .  (1.15) 

The ad g,-invariance of F,,, valid in the Riemannian case, becomes: 

E , ( ~ )  = [~, E , ( x ) ] p ,  V ~ . ,  V X ~ R " .  (1.16) 

The p-part of the curvature, p/l., is given by the same formula as in the Rieman- 
nian case: 

pO,, = [F,,(X), F,(Y) ]p +F,(T(X, Y) ) .  (1.17) 

The analogue of Theorem 1.3 in Ref. [ 15] is: 

Theorem 1.3. Let ~ be a transitive Killing algebra of the l.h.pR. M and let 1~ be the 
isotropy algebra at point x. Then M is locally isometric to a homogeneous pseudo- 
Riemannian space iff H is closed in K. 
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We also have 

Proposition 1.3. Let f be a nonsingular Killing algebra o f  M. Then the sequence 
o f  the covariant derivatives o f  the Riemannian curvature tensor, ( VSR)s~N, w.r.t. 
the frame u, may be recovered from the Caftan-Singer map F, and from the g,- 
curvature 12,,, by means o f  the formulas: 

/),, = 12, -t- v 12,, (1.18) 

( V°R)(X,Y;Z,T) = ( O . (  u - ' X ,  u - ' l O u - 1 T ,  u-lZ)u, (1.19) 

~x V'+ I R =  F,,( u -~X) • VSR , (1.20) 

where tx is the interior product and F.(  u -~X) acts as a derivation. 

Remark 1.2. The Riemannian curvature tensor o f  M at x w.r.t, u is given by (1.19) 
even i f  M is degenerated. 

2. ~-triples 

Definition 2.1. Let g be a subalgebra of o ~(n). We say that (1o, F, 1)) is a ~-triple 
if o ~(n) = g ~ ~, F: R" ---> ~ is a linear map and/) :  R" X R" ~ fi is a bilinear anti- 
symmetric map, such that if we formally replace fi with ft,, Fwith  F,, and/~ with 
12,, then ( 1.13)-(1.16) will hold true. 

If the restriction of the Killing form to ~ is nondegenerate, we say that the g- 
triple (g J-,/', ~ )  is a Cartan triple. 

Theorem 2.1. Let ~ be a subalgebra o f  o ~( n ), and let ( ~, F, ~ )  be a g-triple. 
Then there is a l.h.pR ( M, g )  unique up to a local isometry, a frame u E OM,  and 
a transitive Killing algebra ~ on M, such that A,(f~(u)) = g, and w.r.t, the decom- 
position 0 ~( n ) = g ~ la, F.  = F and 12. = ffl. 

We shall say that (M, g )  in Theorem 2.1 is the local geometric realization of 
the ~-triple (1o, F, $)). 

Proof. We consider the Lie algebra ~ = (g ~9 R", [ , ]), where [ , ] is defined in 
(1.10)-(1.12),  with (fi, ~, F, I)) in place of (~,, ~, F,, O,) .  It is obvious that g 
is a Lie subalgebra of ~. Let G be the connected subgroup with Lie algebra g of the 
simply connected group K, of Lie algebra f. Let O ~ t o ~ . ~ I ( K ,  R " ~ g )  be the 
canonical form of K, and let V= exp A. exp U, with A, U open neighborhoods of 
the zeros of R" and fi, and A such that through each point of exp A there passes a 
unique leaf of  the foliation F defined on V by 0 = 0. 
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As II 011 is constant along the leaves of F, this tensor field on V is projectable to 
a pseudo-Riemannian metric g on M = V/F. 

The tangent space at x, the leaf of 1 r, is isomorphic to the quotient f/g.  We shall 
consider then the frame u of components u,. = ei + g, which belongs to OMx. 

Let a be the natural local K transformation group of M, defined on some open 
neighborhood of 1K× M in KX M, induced by the left translation of K. We claim 
that a is almost effective. Suppose it is not. Then there exists a nonzero ~ g and 
a sequence tn~O, converging to zero, such that aexp,,~ is the identity of some 
neighborhood of the leaf of l r  in M. 

It follows that there exists a neighborhood N of 0 ~ R", such that for each X ~ N, 
there is some 7/, ~ g, such that exp tn~" exp X =  exp X. exp 7/,. This condition 
expresses the fact that we remain on the same leaf of F, as we act by exp t ,~= id. 
Then due to a consequence of the Campbell-Hausdorff formula [ 21, Th. 5.16], if 
we change X in the above formula to tnX, we deduce that 
t][~:, X] + o(t~) = - t ,~+ 77, E g. 

Then [~, X] is in g, as a limit of elements in g, and ad ~(R n) ___g. From ( 1.11 ), 
this is possible iff ~= 0, thereby proving our claim and showing that A,,(~x) = g. 

Further, since the Lie algebras ~ and ~, associated to the g-triples (19, F, l)) and 
(19,, F,,, g2,) have the same structure equations, F=/-],, and ~)= O,. 

Let K be the simply connected Lie group of Lie algebra ~ = (g • R", [ , ]), 
associated to the g-triple (19, F, g~), and let G be the connected subgroup of K, of 
Lie algebra g. If G is closed in K, then, as in the proof of Theorem 1.4., II011~ is 
projectable to a pseudo-Riemannian metric g on K~ G. We shall say that (K~ G, 
g)  is the geometric realization o f  the closed g-triple (p, F, l)) .  

The geometric realization of a g-triple is simply connected; moreover, if f has 
an n-dimensional subalgebra 1, which is transverse to g, then the geometric reali- 
zation is diffeomorphic to the simply connected group of Lie algebra L 

Until now, there were no relevant differences between the Riemannian and the 
pseudo-Riemannian case. However, if we try to generalize the equivalence criterion 
of section 3 in Ref. [ 15 ], we encounter some difficulties even for n.l.h.pR.'s, since 
the nondegeneracy of a transitive Killing algebra may not be inherited from the 
whole Lie algebra of Killing vector fields on M, f (M) .  All we can prove is the 
following: 

Theorem 2.2. Let M1, M2 be two l.h.pR.' s. Then there is a local isometry f from 
M 1 to  M E, i f f  there are some f rames  u I E O M 1 ,  UEEOM2,  such that 
A,,~([(M1)~,) =A,2(~(M2)~, 2) =fi  and there is a complement 19 of  ~ in o~( n ), 
so that w.r.t, the decomposition ov(rl) = g~)19, the Cartan-Singer maps and the 
~-parts of  the curvature o f  M 1 and [[4 2 are equal. 

For a = 1, 2, let f~, be a transitive Killing algebra of some n-dimensional l.h.pR. 
M,~ of index v, and let us ~ OM~. 
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Corollary 2.1. I f  M1 is locally isometric to M2, their curvature tensors RL, ,, 
RE,u2, given by (1.19), are conjugate under the natural action of O~( n) on the 
space of curvature tensors. 

If f is a transitive Killing algebra of M, u ~ OMx and/)u is defined in (1.18), 
the Ricci form associated with (f, u) is the bilinear symmetric form uP: 
R" × R" ~ R, given by: 

up(ei, ej) : Tr(x---> ~2u(x, ei)ej) . (2.1) 

The Ricci polynomial Ric is defined by: 

Ric(t) = det(up( ei, ej) - t~Su) , (2.2) 

where ~6ij = 6u for i ~< n - v and ~6ij = - 6ii for i > n - v. 

Remark 2.1. Ric(t) is an invariant of the local isometry class of the l.h.pR. (M, 
g). 

Remark 2.2. If f is a nonsingular Killing algebra of (M, y ) ,  and if ~ = Au(fx), 
then, as in the Riemannian case, one may find Au(f(M)x), starting from the Cartan 
triple (fi±, Fu, $)u), as follows: 

A,,(~(M)x) = {~E0~(O),  ~. V'R=O, VsE  N}. 

In this case, one may label as fis the vector subspace { ~ o , ( n ) ,  ~. VPR=0, 
p ~< s } of o ~(n),  and define the Singer invariant to be the largest s, such that fis 4: fi=. 

3. Examples 

This section provides applications of the mechanics of g-triples. A first example 
proves the consistency of Theorem 1.3. 

In order to obtain examples relevant to that theorem, it is natural to look for a 
transitive Killing algebra, whose linear isotropy subalgebra is the Lie algebra of a 
nonclosed Lie subgroup of O~(n) .  

As a vector space, o~(n)  has the basis ffJ) l<i<j<n, 

f~=E~--  ~Siy Ej .  (3.1) 

In our example n = 5 and v=  3, and we start from the maximal torai subalgebra 
t = Rfl  2 ~)Rf 4 of o3(5),  tangent to the toms T. 

Let r be a positive irrational number. Then, the one-parameter subgroup Gr of 
the Lie algebra fir = Rff~ + rf  4) is dense in T, and therefore we will look for a 
Caftan triple (~, F , / ) )  with ~ = ~r. L e t f = f  2 + rf 4. 

One of the solutions for ( 1.16)-(1.18) is 
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, , d 5 F(el) =bf52 F(e2) = - b f ~  F(e3) = ~f 4, 

F(e4) = - d f ~ ,  F(es) = 0 ,  

~ ( e l , e 2 ) = ~ - ~ r 2  + 2~dr)f, 

~)(e3, e4 )  = --d(1-'-'~r2+ 2 b ) f , b >  O, d> O, b r - d < O .  (3.2) 

The corresponding transitive Killing algebra f = ( ~ ~) ~ 5, [ , ] ) splits as a direct 
sum of two copies of dt l (2) ,  ~=~1~2 ,  where ~l=Span(e l ,  e2, re5 -d f ) ,  
]~2 = Span (e3, e4, - e5 + bf). 

The subalgebra d = R( -e5  + b f ) ~  R(re5-  df) is toral in ~. The Lie subgroup 
of H of the Lie algebra ~, of the simply connected group K = SU (2) × SU (2) of 
the Lie algebra ~, is dense in the toms S of the Lie algebra d. 

Theorem 3.1. For any positive irrational r, the local geometric realization of the 
Cartan triple ( g ,  F, {2), defined in (3.2), is afire-dimensional n.l.h.pR, of index 
3, that is not locally isometric to a homogeneous space. 

R e m a r k  3.1. (See Ref. [23] for a Riemannian analogue.) A local geometric 
realization of the Cartan triple (3.2) may be viewed as a transverse manifold M to 
the pseudo-Riemannian foliation Dr of SU(2) × SU(2),  with the left invariant 
metric 9 defined by the ad ~-invariant bilinear form B on ~tt(2),  B( (x~, Yl), (x2, 
Y2) ) = - h Tr(xl, Yl) + / x  Tr(x2, Y2), 

r 1 
h -  b ( d - b r ) '  ~ -  d ( d - b r )  

D r is the Lie foliation generated by the diagonal matrices 

e i t  

e -  it 
eirt 

e - irt 

and the factor metric g. 
Our next objective is to find the three-dimensional degenerate l.h.pR.'s. Let us 

denote f  2 + f  31 byf.  In order to exhaust all the possibilities, we need the following 
elementary fact: 

L e m m a  3.1. A degenerate Lie subalgebra of o 1 (3)  is conjugate to m (3 )  = Span (f, 
f 3) or to ~t = R f  
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It may be shown that the local geometric realization of an m(3)-triple has 
constant negative curvature. 

If one identifies 01(3) with the Lie algebra of the full group of isometries of the 
hyperbolic plane, ~}t is the Lie algebra of the horocyclic translations [ 6, p. 3 ]. 

We list the t)t-triples. Since the Killing form vanishes along [}t, we shall take for 
its complement in 01 (3) ,  the plane p = Span(f 3 , f  3). 

Any ~t-triple of the form (10,/-', l)) is given by 

F ( e l ) = a f  3 , F(e2)=F(e3)  = - a f  3 + b f  3 , O( ei, ej) = 1-20f, 
(3.3) 

where 

O12 --1213 + a 2 = 0 ,  1223 = a b = 0 .  (3.4) 

From (1.9) it follows that: 

0 ( e l ,  e2) = O l z f ,  • (e l ,  e3) = 013f,  0(e2,  e3) = D-23f. (3.5) 

If a4=0, the transitive Killing algebra associated to the ~)i-triple (p, iV', /~), 
= ~)t ~ Span (el, e2, e3), has the structure equations 

[e~, e2]=2ae3 + ( a 2 - O 1 2 ) f  , [el, e3]=a(e2 +a3) - O12f, 

[ez, e3] = - a e l ,  If, el] =e3 - e 2  +af ,  If, e2] = If, e3]=el  . 

By ( 

(3.6) 

1.17) and (1.18) the curvature of the local geometric realization is 

/ ) (e l ,  e2) = O12f 2 + (O12 +a2) f  3, l'2(ez, e3) =a2f  3, 

O(el ,  e 3) = ( ,012  + a 2 ) f  2 + (O12 + 2a2)f  3 1 , ( 3 . 7 )  

the Ricci polynomial 

Ric(t) = ( t +  2a 2) 3 (3.8) 

with 

Proposition 3.1. There exist a locally homogeneous Lorentz manifold ( l.h.L.) 
which has the Ricci polynomial of  a space of  constant negative curvature, but is 
not of  constant negative curvature. 

Proof This is a three-dimensional 1.h.pR. which apparently is not dependent only 
on the Ricci polynomial. 

From (3.7), it follows that the local geometric realization M of a I)t-triple (10, 
F, O) with a 4= 0 has the possible nonzero components of the curvature tensor given 
by 

R1212 = ~"~12 , R1213 = ~'~12 + a 2 ,  R1313 = ~'~12 "~- 2a2 , R2323 = a 2 .  
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Let [x~, x2, X3] be the dual (pliickerian) coordinates of some nondegenerate 
tangent plane 7r~ G2(TxM),  w.r.t, u, the orthoframe given by Theorem 2. I. The 
sectional curvature of 7r is (see Ref. [2] ): 

(x2 - x 3 )  2 
K~[x,, x2, x3] = - a Z +  (~12 +aZ)  x3-~--Xl 2 _ x  2 , (3.9) 

showing that the space has constant curvature iff ~12 + a2= 0. 
Thus, Kx is a rational function defined on the complement of the oval x 2 - 

x 2 - x  2 = 0 (the null locus) in P2R, whose image is the union of two connected 
subsets I,, Is, of R, corresponding to the timelike and the spacelike planes, respec- 
tively. The conic Q = 0 is the homaloidal conic of the point x. Of course, I, and Is 
are invariant under local isometrics, and therefore they are local invariants of a 
1.h.L. 

If Olz + a2 > O, It = [ - a z, ~) ,  and if ~21z + a2 < O then, It = ( --~, --a2], which 
proves that there are at least three pairwise nonisometric 1.h.L.'s, having the Ricci 
polynomial of a space of  constant negative curvature. 

If a = 0, f = ~t ~Span(e l ,  e2, e3) has the structure equations 

[el, e2] = [e l ,  e31 = - ~O,zf, [e2, e3] = - b ( e 3  - e 2 )  , 

[f, el] =e3 --e2, If, ez]=[f, e3] =e l  +bf .  (3.10) 

For b = 0, f = l~)tGSpan(el, e2, e3) is a reductive decomposition, such that the 
geometric realization is a Lorentz symmetric space that is indecomposable and 
does not have constant curvature if O124:0; this is immediate, since the Ricci 
polynomial is t 3 and the curvature is not zero. 

Let K be the simply connected group of Lie algebra f. The connected Lie 
subgroup of the Lie algebra t)t is closed in K. We shall now that that there are 
precisely three distinct geometric realizations of this type. 

Indeed, the homoloidal conic is the double line (x2 -x3)2  = 0, tangent to the null 
locus, and the sectional curvature is given by (3.9), where a = 0. Then, if toil < O, 
and M, M'  are two local geometric realizations that are associated with the para- 
meters Ol2=to  and ~12 =/3, respectively, one may assume, w.l.o.g., that 
I,(M) = [0, w) and I,(M') = ( -oo, 0], and therefore M and M'  are not locally 
isometric. We shall say that the geometric realization of an ~)t-triple with a = 0 is 
a + space, if Olz > 0, and is a - space is f~12 < 0. 

It is known that a Riemannian manifold modelled on an irreducible symmetric 
space is locally symmetric [ 5 ]. The Lorentzian analogue of this statement fails to 
be true: 

Proposition 3.2. Let a be a real root  o f  ol 2 -  ab+ ~ 2  =0.  Let Sol(b ,  a)  be the 
Lie group of  affinities of  the real plane, generated by the translations x' = x +  u, 
y' = y + v, and by the dilations x' =exp(  t)x, y'  =exp( bt/ a)y, together with the 
Lorentz metric 
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1 
g = e x p ( 2 t )  .du2+ ~ ( 2 e x p ( b t / a )  d t . d v - d t  2) . (3.11) 

I f  b~12 :/= O, then So l (b ,  a) is modelled on a symmetric space, without being locally 
symmetric. 

Proof  If ~12 ~ 0, the geometric realization of the ~t-triple (Io,/', g)), defined by 
(3 .3)-(3 .5) ,  with a=O4=OlZ, has f=~) t~Span(e l ,  ez, e3) as maximal Killing 
algebra. For a fixed g2~2, all these spaces have the same curvature tensor w.r.t, the 
frame (el, e2, e3). We are looking for a Lorentz Lie group structure on such a space. 
Supposing e l ,  e~, e~, with e~ =ei + aif, generate a subalgebra of f. From (3.10) 
it follows that such a subalgebra exists iff b 1 - 4 ~ 2 > 0 ,  and in this case C~l is a 
solution of a z - ab + ~'~12 = 0 and ot 2 = a3. Assume for simplicity that a3 = 0. The 
Lie subalgebra [ = Span ( e ], e [, e [) is solvable and centreless, 

[e], e'2] = [e], e'3] = ae'l , [e'2, e'3] =b(e '2-e '3)  , 

and then the canonical form 0=  0~e~ of / - ,  the simply connected Lie group of Lie 
algebra [, satisfies the system 

d O l + o t O I A ( 0 2 - 1 - 0 3 ) = O ,  d O 2 + b O 2 A 0 3 = O ,  d ( 0 2 +  03) = 0  . 

/. is the geometric realization of our ~t-triple, and then e ' =  (e l ,  e~, e~) is a field 
of orthoframes of/- .  A straightforward calculation shows that (VeeR) (e], e'2, e'~, 
el)  = - 2b/2~2 :~ 0, showing that L is not a symmetric space. 

Since [ is centreless it is isomorphic to its adjoint representation. Let 

Xl = a d e ] ,  X2 = a d  1 ( e [ - e ~ )  X3 = a d  1 e[ 
o~ O/ 

and let A =exp(uX1) exp(vX2) exp(tX3) be an arbitrary element in the Lie sub- 
group of GI( 3, R) generated by ad [. Then the canonical form 19=A - ~ dA is easily 
seen to be 

exp(t) du X~ + exp( bt/  a) dv X 2 + dt X 3 =ad(O) , 

and we identify (Ad(L) ,  II 011,2) with S o l ( b ,  a) .  [] 

Proposition 3.3. Suppose [3 4= 0 is the imaginary part o f  a complex root o f  the 
equation z 2 - bz + ~ l z  = O. Then O( b, [3) = ( R 3, g)  where g is given by 

ff = exp(bx) (cos 213x • (dy) 2 + 2dx-dt) - (dx) 2 (3.12) 

is a degenerate l.h.pR. Any three-dimensional degenerate l.h.pR, is locally isometric 
to some D(b, [3). 

Proof  Take an ~)t-triple (1o, F, J')), defined by (3.3)-(3.5)  with a = 0 < O ~ 2 ,  
b z _ 4g21 z < 0. As in the proof of Proposition 3.2, t~ = Rf~) Span (el, e2, e3) is the 
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maximal Killing algebra of the geometric realization of (p, F , / ) ) .  The Lie algebra 
has no subalgebra transverse to Dr, and ~t is degenerate w.r.t, the Killing form. 

To end the proof, it is enough to show that the geometric realization of this Dr- 
triple is D( b, fl). 

We claim that the geometric realization is diffeomorphic to R 3. 
Our ][)t-triple is closed, since f is solvable. Let g be the derived algebra of ~; this 

is the three-dimensional nilpotent Lie algebra. Let K be the simply connected group 
of Lie algebra f, and let G be the subgroup of Lie algebra g and H = exp(Rf).  

Since G is a codimension 1 Lie subgroup of the solvable group K, K~ G is R, 
and since G is Nil, G / H  is easily seen to be R 2. The projections defining these 
quotients being trivial fibrations, let k: R ---> K, g: R 2 ---> G be differentiable sections 
of these fibrations. Then the map (a, b, c) ~ k(a)g(b,  c) H is a diffeomorphism 
from R 3 to K~ H, proving our claim. 

Let e 4 = f a n d  let 0=  Oiei be the canonical form of K. (3.10) yields 

dO l -  (02+ 03) A 04=0, 

d0 4 -  (~O01 -bO 4) A (02+ 0 3) : 0 ,  

dO2+bO2A 03+ 01 A 0 4 = 0 ,  

dO3-bO2A 0 3 -  01A 04=0, (3.13) 

with the global solution 

02 = exp(bx) (flu. dv + d t ) ,  

02+ 0 3 = d x ,  (3.14) 

( - ½b+ i f l )01+ 04= f e x p ( ½ b + i f ) x .  ( d u + i  dr) . 

The Pfaffian system 01 = 02 = 03 = 0 has the first integrals x, y, z, where 

y = v + u t a n ( f x )  , z = -½fuEtan( fX)  +t .  (3.15) 

Then, on K the projectable tensor 

g =  (01 ) 2+ (202 - (02+ 03)) (02 + 03) 

is given by (3.12). [] 

Remarks.  The Lorentz spaces in Propositions 3.2, 3.3, are locally the only possible 
three-dimensional nonsymmetric homogeneous spaces modelled on a symmetric 
space. Together with the lists in Refs. [ 6, ] or [ 18 ], they give the full picture of the 
local metric structures of homogeneous Lorentz three-dimensional manifolds. 
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